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SUMMARY

This paper derives closed-form solutions for the parameters of a time-delay filter designed to be robust to
uncertainties in frequencies to be cancelled. It is shown that the slope of the magnitude plot of the two
time-delay filter is zero at the nominal frequency indicating that it is a local maximum. This information is
used for deriving the solution of the parameters of the time-delay filter in closed form. Three time-delay
filters are also designed which force a zero of the filter to be located at the nominal frequency of the system.
Uniform and non-uniform distributions of the penalty over the uncertain regions are permitted in this
formulation. The applicability of the proposed technique for the control of multi-mode systems is also
illustrated. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vibration attenuation by shaping input to underdamped systems has been addressed by
numerous researchers [1–6] besides others. There has been an increased interest in the
development of techniques to desensitize the controllers to uncertainties in the system model.
The requirements of high precision in applications such as hard disk drives [7], telescopes [8, 9],
etc. mandate that the controllers satisfy the pointing requirements in the presence of
uncertainties in the model. Singer and Seering [2] proposed a technique to design a sequence
of impulses with the objective of forcing the variation of the sensitivity of the residual energy of
the system with respect to modelled damping or frequency to zero. The resulting controllers
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were called input shapers. Singh and Vadali [5] illustrated that robustness to modelling errors
can be achieved by cascading multiple time-delay filters designed to cancel the nominal poles of
the system. Singhose et al. [10] proposed a technique which they referred to as multi-hump
extra-insensitive (EI) input shaper where they determine the amplitudes of the impulses so as to
maximize the uncertain domain where the residual vibration is below a specified threshold.
Singh [11] proposed an optimization problem where the maximum magnitude of the residual
energy in an uncertain domain is minimized. The difference between the EI input shaper and the
minimax time-delay filter is that the EI shaper requires the residual energy curve to be zero at
two frequencies which flank the nominal frequency of the considered mode. However, this
constraint is not required in the minimax formulation and minimax design results in a larger
uncertainty domain for any specified residual energy threshold, which corresponds to increased
robustness. Singhose et al. [12] also illustrate the benefit of using the input shaping technique
(time-delay filter) compared to conventional Finite Impulse Response (FIR) and Infinite
Impulse Response (IIR) filters. In this paper, the minimax problem is first addressed for a single
mode system. In numerous applications, there exists one dominant mode which is the main
contributor to the residual energy of the manoeuvring structure. Thus, there is a motivation to
derive the optimal time-delay filter which minimizes the maximum magnitude of the transfer
function of the time-delay filter, in closed form. A simple technique for handling multiple modes
is also proposed. The resulting filter is designed by addressing the problem as a series of single
mode problems.

Section 2 focuses on the development of closed-form solutions for the parameters of minimax
time-delay filters. The development is then modified to permit differential weighting of the
limiting and nominal frequencies. In Section 3, a simple approach is proposed to permit using
the solution of the undamped systems to system with damping. The approach to design minimax
filters for multi-mode systems is described in Section 4. The paper concludes with some remarks
in the final section.

2. OPTIMAL MINIMAX FILTERS FOR UNDAMPED SYSTEMS

2.1. Two time-delay filter

A time-delay filter to modify the reference input to a system to attenuate residual vibrations is
shown in Figure 1.

The transfer function of the time-delay filter is given by the equation

A0 þ A1 e
�sT1 þ A2 e

�sT2 ð1Þ

which is used to prefilter inputs to a system characterized by undamped modes. The frequency
of the mode to be cancelled is uncertain, but the region of uncertainty is known. Assume that the
nominal frequency is o0 and the uncertain frequency o lies in the range

ol4o42o0 � ol ð2Þ

implying that the uncertainty is symmetric about the nominal frequency. Figure 2 illustrates
schematically the objective of the optimization problem where the maximum magnitude of the
cost function over the domain of uncertainty ol to 2o0 � ol is to be minimized. To minimize the
maximum magnitude of the magnitude plot of the time-delay filter in the region of uncertainty
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(Figure 2), we require that the magnitude of the time-delay filter at the boundary be equal to
that at the nominal frequency. Assuming further that

T1 ¼
p
o0

and T2 ¼
2p
o0

ð3Þ

the magnitude of the transfer function of the time-delay filter can be shown to be

FðoÞ ¼ A2
0 þ A2

1 þ A2
2 þ 2A0A1 cos

o
o0

p
� �

þ 2A0A2 cos
2o
o0

p
� �

þ 2A1A2 cos
o
o0

p
� �

ð4Þ

The location of the maximum of FðoÞ can be determined from the equation

dFðoÞ
do

¼ �2A0A1
p
o0

sin
o
o0

p
� �

� 2A0A2
2p
o0

sin
2o
o0

p
� �

� 2A1A2
p
o0

sin
o
o0

p
� �

¼ 0 ð5Þ

It can be seen that o ¼ o0 satisfies Equation (5). To determine the parameters of the minimax
time-delay filter, the magnitude of the time-delay filter at the boundary and the nominal
frequency are equated, resulting in the equation

A0 þ A1 cos
ol

o0
p

� �
þ A2 cos

2ol

o0
p

� �� �2

þ A1 sin
ol

o0
p

� �
þ A2 sin

2ol

o0
p

� �� �2

¼ ðA0 þ A1 cosðpÞ þ A2 cosð2pÞÞ
2 ð6Þ

− −

Figure 1. Time-delay filter.

max

Figure 2. Sensitivity curve.
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For undamped systems, we can assume that A2 is equal to A0: We also require the constraint

A0 þ A1 þ A2 ¼ 1 ð7Þ

to be satisfied to enable passing DC signals without amplification or attenuation. Solving for A0;
we have

A0 ¼
2ð1þ cosððol=o0ÞpÞÞ

5þ 4 cosððol=o0ÞpÞ � cosðð2ol=o0ÞpÞ
ð8Þ

Figure 3 illustrates the variation of the gains of the time-delay filter as a function of the
normalized uncertain interval. It can be seen that the amplitudes are always positive which is
due to the fact that the delay time of the filter has been selected to be an integral multiple of half
the period of the frequency to be cancelled. In the limit when ol=o0 equals unity, the optimal
solution boils down to the robust time-delay filter designed to place two zeros at the estimated
location of the poles of the system.

Calculating the magnitude of the time-delay filter at o ¼ 2o0 � ol using the solution for A0

given by Equation (8), we can show that it is equal to that at the nominal frequency o0: Thus,
the magnitude of the time-delay filter at the two limits of the uncertain frequency range and the
nominal frequency are the same.

Figure 4 illustrates the variation of the magnitude of the transfer function of the time-delay
filter which is referred to as the sensitivity curve, for different uncertain regions. It is clear from
the figure that as the uncertain region decreases, the maximum magnitude of the sensitivity
curve becomes smaller.

Since, the magnitude of the sensitivity plot at the nominal frequency is

ðA0 þ A1 cosðpÞ þ A2 cosð2pÞÞ ¼ ðA0 � A1 þ A0Þ ¼ ð�1þ 4A0Þ ¼
1þ cosðpol=o0Þ
3� cosðpol=o0Þ

ð9Þ
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Figure 3. Time-delay filter parameters.
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the uncertain region can be solved given a permissible maximum magnitude of the sensitivity
curve. For a given magnitude M; the lower bound of the uncertain frequency range is

ol ¼
o0

p
cos�1

3M � 1

M þ 1

� �
ð10Þ

or the width of the uncertainty is given by the equation

2ðo0 � olÞ ¼ 2o0 1�
1

p
cos�1

3M � 1

M þ 1

� �� �
ð11Þ

It is also clear from Equation (9) that A0 lies in the range

1
4
4A041

2
) 04M41 ð12Þ

since the magnitude of the sensitivity curve should not be greater than 1 at the nominal
frequency.

The location of zeros of the minimax filter can be solved for by substituting the closed-form
solutions for the parameters of the time-delay filter into Equation (1). The equations resulting
by equating the real and imaginary parts of Equation (1) to zero lead to

A0 þ A1 cosðoTÞ þ A2 cosð2oTÞ ¼ 0 ð13Þ

A1 sinðoTÞ þ A2 sinð2oTÞ ¼ 0 ð14Þ

where T ¼ p=o0; which have to be solved to determine the locations of the zeros of the time-
delay filter. Equation (14) can be rewritten as

ð1� 2A0Þ sinðoTÞ þ A0 sinð2oTÞ ¼ sinðoTÞð1� 2A0 þ 2A0 cosðoTÞÞ ¼ 0 ð15Þ
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Figure 4. Sensitivity curve.
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which can be solved resulting in the equation

cosðoTÞ ¼
2A0 � 1

2A0
ð16Þ

which satisfies Equation (13) as well. Thus, the zeros of the time delay filter ðs ¼ ojÞ are given by

o ¼ �
1

T
cos�1

2A0 � 1

2A0

� �
þ

2np
T
¼ �

o0

p
cos�1

2A0 � 1

2A0

� �
þ 2no0 ð17Þ

where n is an integer. Table I lists the location of the zeros and the maximum magnitude of the
sensitivity plot as a function of the uncertain range.

The proposed approach is compared to a numerical minimax optimization [11] approach for
three uncertain intervals and the results are tabulated in Table II. The minimax problem
corresponds to the determination of the parameters of the time-delay filter to minimize the
maximum magnitude of the function FðoÞ (Equation (4)). It can be seen that the difference
between the numerical and the proposed approach is negligible.

2.2. Non-uniform weighting

To permit differential weighting of the frequencies in the uncertain region, the previous
development can be modified to include a penalty at the boundary of the uncertain region. The
weight at the nominal frequency is always assumed to be unity. Including the penalty in the
formulation results in Equation (6) being modified to

W A0 þ A1 cos
ol

o0
p

� �
þ A2 cos

2ol

o0
p

� �� �2

þ A1 sin
ol

o0
p

� �
þ A2 sin

2ol

o0
p

� �� �2

¼ ðA0 þ A1 cosðpÞ þ A2 cosð2pÞÞ
2 ð18Þ

Table I. Minimax solutions.

Maximum magnitude Zero location Zero location
Uncertain range ð�1þ 4A0Þ 1

T
cos�1 2A0�1

2A0

� �
j �1

T
cos�1 2A0�1

2A0

� �
þ 2o0

� �
j

0:65o51:4 0.2088 0:7271j 1:2729j
0:75o51:3 0.1149 0:7919j 1:2081j
0:85o51:2 0.0501 0:8598j 1:1402j

Table II. Analytical and numerical minimax solutions.

Uncertain range Numerical optimal cost Closed-form cost % Change

0:65o51:4 0.20881821054915 0.20881821000003 �2:63E� 7
0:75o51:3 0.11489393001650 0.11489393002107 3:98E� 9
0:85o51:2 0.05013970954040 0.05013971119400 3:29E� 6
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For instance, if a gaussian penalty is assumed then

W ¼ exp �
ðol � o0Þ

2

2s2

� �
ð19Þ

where s is the variance of the gaussian distribution. Assuming that A2 ¼ A0 and therefore
A1 ¼ 1� 2A0; we can solve Equation (18), resulting in the quadratic equation

A2
0 6ðW � 1Þ � 8 1þ cos

ol

o0
p

� �� �
� 2 1� cos

2ol

o0
p

� �� �� �

þ A0 �4ðW � 1Þ þ 4 1þ cos
ol

o0
p

� �� �� �
þ ðW � 1Þ ¼ 0 ð20Þ

which can be used to solve for A0:
Figure 5 illustrates the optimal solutions as a function of different penalties on the boundary

and nominal magnitude of the sensitivity curves. It can be seen that as s decreases, the
magnitude of the transfer function of the filter at the nominal frequency also decreases.

2.3. Three time-delay filter

It can be seen from the two time-delay filter that the magnitude of the time-delay filter transfer
function at the nominal frequency is non-zero. To force the magnitude at the nominal frequency
to zero while minimizing the maximum magnitude of the transfer function over the uncertain
domain, a three time-delay filter is proposed as shown in Figure 6.

As in the development for the two time-delay filter, the time delays are assumed to be

T1 ¼
p
o0
; T2 ¼

2p
o0

and T3 ¼
3p
o0

ð21Þ
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Figure 5. Robust minimax control: varying penalty.
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Further, assuming that

A0 ¼ A3 and A1 ¼ A2 ð22Þ

and with the requirement that

A0 þ A1 þ A2 þ A3 ¼ 1 ð23Þ

it can be shown that the magnitude of the transfer function of the time-delay filter

FðoÞ ¼ 8 cos3
op
o0

� �
A2

0 þ ð4A0 � 8A2
0Þ cos

2 op
o0

� �
þ

1

2
� 8A2

0

� �
cos

op
o0

� �
þ

1

2
� 4A0 þ 8A2

0

ð24Þ

is 0 at o ¼ o0; the nominal frequency. The location of the extremum of the sensitivity curve can
be determined from the equation

dFðoÞ
do

¼
p

2o0
48A2

0 cos
2 op

o0

� �
þ ð16A0 � 32A2

0Þ cos
op
o0

� �
þ 1� 16A2

0

� �
sin

op
o0

� �
¼ 0 ð25Þ

Equating the sin term to zero, we have

o ¼ o0 ð26Þ

which corresponds to the minimum at the nominal frequency. The other solution is determined
by solving the quadratic equation in the cos term, resulting in

o ¼
o0

p
cos�1

4A0 � 1

4A0

� �
þ 2no0; n ¼ 1; 2; 3 . . . ð27Þ

which corresponds to the minimum and

o ¼
o0

p
cos�1 �

4A0 þ 1

12A0

� �
þ 2no0; n ¼ 1; 2; 3 . . . ð28Þ

which corresponds to the maximum. The magnitude of the sensitivity curve at the maximum is

F o ¼
o0

p
cos�1 �

4A0 þ 1

12A0

� �� �
¼

512A3
0 � 192A2

0 þ 24A0 � 1

54A0
ð29Þ

Equating the magnitude of the transfer function of the time-delay filter at the lower limiting
frequency to the maximum, we have

8 cos3
olp
o0

� �
A2

0 þ ð4A0 � 8A2
0Þ cos

2 olp
o0

� �
þ

1

2
� 8A2

0

� �
cos

olp
o0

� �
þ

1

2
� 4A0 þ 8A2

0

¼
512A3

0 � 192A2
0 þ 24A0 � 1

54A0
ð30Þ

– – –

Figure 6. Time-delay filter.
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we can solve the cubic equation for A0; resulting in the solution

A0 ¼ �
1

3 cosðolp=o0Þ � 5
; A0 ¼ �

1

4ð1þ 3 cosðolp=o0ÞÞ
and

A0 ¼ �
1

4ð1þ 3 cosðolp=o0ÞÞ
ð31Þ

The second and the third solutions, which are identical, force the boundary to be a maximum
resulting in a suboptimal minimax filter. The first solution results in two maxima which lie
within the uncertain interval resulting in the optimal minimax solution.

Figure 7 illustrates the variation of the gains of the time-delay filter as a function of the
normalized uncertain interval. It can be seen that the amplitudes are always positive as in the
two time-delay case. It should be noted that at ol=o0 ¼ 1; the solution corresponds to the filter
where three identical single time-delay filters, which are designed to cancel the nominal
frequency of the system, are cascaded.

Figure 8 illustrates the variation of the sensitivity curve for different uncertain regions.
Compared to Figure 4, it can be seen that the maximum magnitude of the three time-delay filter
is significantly smaller than the two time-delay filter.

Figure 9 illustrates the variation of the uncertain region as a function of permissible
maximum magnitude of the two and three time-delay filter. It is clear that as the maximum
permissible magnitude of the time-delay filter, M; is increased, the uncertain region
monotonically increases. However, the rate of increase of the uncertain region of the three
time-delay filter is large compared to the two time-delay filter in the vicinity of zero permissible
magnitude. This implies that for small permissible magnitude, the uncertain region of the three
time-delay filter is large.
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Figure 7. Three time-delay filter parameters.

CLOSED-FORM MINIMAX TIME-DELAY FILTERS 165

Copyright # 2006 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2007; 28:157–173

DOI: 10.1002/oca



3. DAMPED SYSTEMS

To design minimax filters for systems characterized by under-damped behaviour, a simple
approach is proposed which uses a transformation to represent the damped system as an
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Figure 8. Sensitivity curve.
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undamped system in the new space. For an under-damped system given by the transfer function

GðsÞ ¼
o2

s2 þ 2zosþ o2
ð32Þ

we define a transformation

s ¼ p� zo ð33Þ

Substituting Equation (33) into Equation (32), we have

GðpÞ ¼
o2

p2 þ o2ð1� z2Þ
ð34Þ

which represents an undamped system with a natural frequency of o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
: The closed-form

solution derived earlier for undamped systems can now be used for this transformed system. The
time-delay filter can then be transformed back into the original space to arrive at the minimax
filter for the damped system.

For instance, the transfer function of a time-delay filter designed to cancel the poles of an
undamped system (Equation (34)) is given by the equation

FðpÞ ¼ 1þ exp �p
p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð35Þ

as shown by Singh and Vadali [5]. Transforming this filter into the original space, we have

FðsÞ ¼ 1þ exp �ðsþ zoÞ
p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð36Þ

which can be rewritten as

FðsÞ ¼ exp
�zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

exp
zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

þ exp �s
p

o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 ! !

ð37Þ

The requirement that the final value of the output of the time-delay filter subject to a unity
step input, be unity, requires scaling of the gains of the time-delay filter, resulting in the solution

FðsÞ ¼
expðzp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
Þ þ expð�sp=o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ

q
Þ

expðzp=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
Þ þ 1

ð38Þ

which is identical to the time-delay filter designed to cancel the damped poles as shown by Singh
and Vadali [5].

Therefore, the closed-form solution for the gains of the two time-delay minimax filter for a
damped system with uncertainty in frequency is given by the equations

A0 ¼
2ð1þ cosððol=o0ÞpÞÞ

5þ 4 cosððol=o0ÞpÞ � cosðð2ol=o0ÞpÞ
exp

2zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð39Þ

A1 ¼ 1� 2
2ð1þ cosððol=o0ÞpÞÞ

5þ 4 cosððol=o0ÞpÞ � cosðð2ol=o0ÞpÞ

� �
exp

zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð40Þ
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and

A2 ¼
2ð1þ cosððol=o0ÞpÞÞ

5þ 4 cosððol=o0ÞpÞ � cosðð2ol=o0ÞpÞ
ð41Þ

and the delay times are

T1 ¼
p

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p and T2 ¼
2p

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð42Þ

and the parameters of the three time-delay minimax filter for a damped system are given by the
equations

A0 ¼
1

5� 3 cosðolp=o0Þ
exp

3zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð43Þ

A1 ¼
1

2
1� 2

1

5� 3 cosðolp=o0Þ

� �
exp

2zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð44Þ

A2 ¼
1

2
1� 2

1

5� 3 cosðolp=o0Þ

� �
exp

zpffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
 !

ð45Þ

A3 ¼
1

5� 3 cosðolp=o0Þ
ð46Þ

T1 ¼
p

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ; T2 ¼
2p

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p and T3 ¼
3p

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ð47Þ

The gains A0; A1; A2 and A3 have to be normalized which is achieved by dividing each of the
gains by A0 þ A1 þ A2 for the two time-delay filter case and by A0 þ A1 þ A2 þ A3 for the three
time-delay filter case.

Equations (39)–(42) and (43)–(47) are the exact minimax solutions for an uncertain region
which lies along the vertical line in the complex plane passing through the nominal damped
poles. This implies that both the damping ratio and the natural frequency are varying. The
optimal solution when uncertainty exists in the estimated natural frequency implies that the
uncertain region is along a straight line passing through the damped nominal pole and
the origin. Figure 10 illustrates the difference between the numerical and the closed-form
solution for a system with a nominal damping ratio of 0.1 and uncertainty in the natural
frequency . The difference between the numerical and closed form increases with increasing
uncertainty and it is clear that the difference is not large and occurs at the upper limit of the
uncertain region.
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4. MULTI-MODE SYSTEMS

The proposed approach can be used to design robust filters for systems whose transfer function
includes multiple modes. Time-delay filters are designed for each uncertain frequency and they
are subsequently convolved to arrive at a time-delay filter which is robust to all uncertain
frequencies.

To illustrate the proposed technique, assume that the two frequencies to be attenuated lie in
the range

0:84o141:2 and 3:64o244:4 ð48Þ

and the nominal frequencies are selected to be at the midpoint of the uncertain regions. The
transfer functions of the minimax time-delay filters for each of the frequencies are

F1ðsÞ ¼ 0:2625þ 0:4749 expð�psÞ þ 0:2625 expð�2psÞ ð49Þ

and

F2ðsÞ ¼ 0:2531þ 0:4938 exp �
p
4
s

� �
þ 0:2531 exp �

2p
4
s

� �
ð50Þ

Figure 11 illustrates the magnitude plot of the minimax filters. The dashed line and the dash-dot
lines are the magnitude plots of the filters F1ðsÞ and F2ðsÞ; respectively. The solid line is the
magnitude plot of the final filter which is

FðsÞ ¼ F1ðsÞF2ðsÞ ð51Þ

It can be seen that the filter FðsÞ is robust to uncertainties in both the frequencies.
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Figure 10. Filter comparison.
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5. PERFORMANCE ANALYSIS

The proposed technique minimizes the maximum magnitude of the transfer function of a time-
delay filter given knowledge of the uncertain domain of the under-damped mode. From a
practical viewpoint, the residual energy of the manoeuvring structure is the metric of interest to
control designers. It is therefore of interest to determine how the proposed technique for the
design of prefilters compares to the minimax filter designed to minimize the maximum residual
energy over the uncertain domain, a technique developed by Singh [11]. The residual energy,
defined by

F ¼ 1
2 ’y

TM ’yþ 1
2
yTKy ð52Þ

where M and K are the mass and stiffness matrices and ’y and y are the velocity and position
vectors of the system in consideration, is used to compare the performance of the two filters.

The two time-delay minimax filter which minimizes the maximum magnitude of the residual
energy is

GðsÞ ¼ 0:2439þ 0:4554 e�3:0527s þ 0:3007 e�2ð3:0527Þs ð53Þ

and the minimax filter using the closed-form solution proposed in this work is

GðsÞ ¼ 0:2787þ 0:4426 e�ps þ 0:2787 e�2ps ð54Þ

where the uncertain frequency o lies in the range

0:74o41:3 ð55Þ

It can be seen that the time-delay of the filter which minimizes the residual energy is smaller
compared to that of the closed-form solution. To compare the performance of the minimax
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Figure 11. Robust minimax control: multi-mode system.
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filters to the ZVD [10] input shaper which has the same number of delays , the ZVD shaper is
designed and is given by the transfer function

GðsÞ ¼ 0:25þ 0:5 e�ps þ 0:25 e�2ps ð56Þ

Figure 12 illustrates the variation of the square root of the residual energy over the uncertain
frequency for three manifestations of the two time-delay filter. It can be seen that the minimax
filter, designed using the residual energy as the cost (solid line), performs better than the
proposed filter (dashed line). The two minimax filters are also compared to the ZVD filter (dash-
dot line) which is designed to place multiple zeros of the time-delay filter at the nominal location
of the uncertain poles of the system and the EI input shaper (dotted line). It is clear that the
maximum magnitudes of the minimax filters are significantly smaller than the ZVD filter over
the uncertain frequency domain. The proposed minimax filter is also marginally better than the
EI input shaper.

The next filter which constrains the residual energy to be zero at the nominal frequency results
in the filters

GðsÞ ¼ 0:1474þ 0:3492 e�3:1415s þ 0:3526 e�2ð3:1415Þs þ 0:1508 e�3ð3:1415Þs ð57Þ

for the residual energy cost and

GðsÞ ¼ 0:1479þ 0:3521 e�ps þ 0:3521 e�2ps þ 0:1479 e�3ps ð58Þ

for the cost proposed in this work. The transfer function for the ZVDD [10] is

GðsÞ ¼ 0:125þ 0:375 e�ps þ 0:375 e�2ps þ 0:125 e�3ps ð59Þ

which places three sets of zeros of the time-delay filter at the nominal location of the poles of the
system.
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Figure 12. Filter performance: 2 time-delay filter.
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Figure 13 illustrates that the difference between the two minimax filters is not very significant
with the proposed prefilter providing a performance which is better than the filter designed to
minimize the maximum residual energy, over a large segment of the uncertain range. As in the
two time-delay filter, the minimax filters outperform the ZVDD (dash-dot line). The benefit of
the proposed technique is that the closed-form solution permits its use in real-time filter design
which would be of interest for the design of adaptive filters.

6. CONCLUSIONS

The contribution of this paper is the development of a closed-form solution for the parameters
of a time-delay filter which minimizes the maximum magnitude of the transfer function
of the time-delay filter. A simple technique to design minimax time-delay filters for
underdamped systems is proposed. The minimax two time-delay filter results in non-zero
magnitude at the nominal frequency. This magnitude can be reduced by penalizing the
magnitude at the nominal frequency compared to the limiting frequencies in the uncertain
domain. Closed-form solutions for non-uniform weighting are also derived. Closed-form
solutions for the three time-delay filter are also derived which force the magnitude at the
nominal frequency to zero.

For systems with non-symmetric uncertain regions around the nominal frequency, the
proposed approach can be used by selecting the mean frequency of the uncertain region
as the nominal frequency in the design process. The proposed technique can also be used
for multi-mode systems by concatenating the minimax filters designed for each uncertain
frequency.
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Figure 13. Filter performance: 3 time-delay filter.
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