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Abstract

Precise position control and rapid rest-to-rest mo-
tion is the desired objective in a variety of applica-
tions. The desire for reducing the maneuver time
requires reducing the inertia of the structure which
subsequently results in low frequency dynamics.
The requirement of precise position control im-
plies that the residual vibration of the structure
should be zero or near zero. This paper presents
techniques to shape the input to the system so
as to minimize the residual vibration. A second
class of problems which includes design of input
profiles for systems with rigid-body modes driven
by actuators with finite control authority, is also
presented. The common thread which connects all
the techniques presented in this paper is related to
the design of controllers which are robust to mod-
eling uncertainties. The proposed techniques are
illustrated by simulations and experiments.

1 Introduction

Smith [1], Calvert and Gimple [2] proposed a sim-
ple technique to generate non-oscillatory response
from an lightly-damped system subject to a step
input. This is achieved by exciting two transient
oscillations so as to result in constructive cancel-
lation of the oscillations. Smith termed the tech-
nique Posicastmotivated by what he states: “ This
is what happens when a fisherman drops his fly
in the water at the maximum-position and zero
velocity instant” [1]. Tallman and Smith [3] illus-
trated the Posicast technique using an analog com-
puter and noted the sensitivity of the controller to

variation in the location of the poles of the sys-
tem caused by nonlinear components in the sys-
tem or variation of the parameters of the system
as a function of temperature.

Between the late 50’s and the publication of the
Input Shaping paper by Singer and Seering [8],
there was some work on the shaping of input
profiles for control of residual vibration [4], [5].
Swigert [5] proposed techniques for the determi-
nation of torque profiles which considered the sen-
sitivity of the terminal states to variations in the
model parameters. Publication of the Input Shap-
ing paper renewed interest in prefiltering refer-
ence inputs for robust vibration control, which
has resulted in dozens of papers with application
to spacecrafts, robots, cranes, chemical processes,
etc. A chronological listing of papers relevant to
robust vibration control of slewing structures is
presented in the bibliography.

This paper will consider two classes of problems:
The first, involves real-time shaping or time-delay
filtering of the reference command to stable sys-
tems with the objective of minimizing the resid-
ual vibration [1] [8], [16], [23]. This will be dealt
in detail in Section 2. The second class of prob-
lems considered is the design of controllers for sys-
tems with rigid body modes with constraints on
the control input [7], [9], [14], [29], [49]. This can
be further classified into two categories which will
be expounded in Section 3. Sections 2 and 3 will
describe in detail, technique for reducing the sen-
sitivity of the control profile to errors in model
parameters such as damping ratio, and natural fre-
quency. Section 4 will briefly address the design
of robust controllers for nonlinear systems [41].



Finally, Section 5 will describe some applications
where the proposed techniques have been success-
fully implemented.

2 Real Time Command Shaping
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Figure 1: Overhead Gantry Crane

There are all types of possible solutions to the
problem of flexible dynamics including feedback
control, feedforward control, command shaping,
and even redesigning the physical hardware. A
simple example of this challenging area is pre-
sented by an overhead gantry crane like the one
shown schematically in Figure 1 . The payload is
hoisted up by a cable. The upper end of the cable
is attached to a trolley which travels along a rail
to position the payload.

Cranes are controlled by a human operator who
moves levers or presses buttons to cause the trol-
ley to move. If the operator simply presses the
control button for a finite time period, then the
trolley will move a finite distance and come to rest.
The payload on the other hand, will usually oscil-
late about the new trolley position. The payload
position for a typical trolley movement is shown
in Figure 2a.

An experienced crane operator can sometimes pro-
duce the desired payload motion with a small
amount of residual vibration by pressing the but-
ton multiple times at the proper instances. The
payload position for such a situation is shown in
Figure 2b.

2.1 Simple Zero Vibration Command
As a first step to understanding how to generate
commands that move systems without vibration,
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Figure 2: Crane Response: a) Unshaped Command
b) Shaped Command

it is helpful to start with the simplest such com-
mand. We know that giving the system an impulse
will cause it to vibrate; however, if we apply a sec-
ond impulse to the system, we can cancel the vi-
bration induced by the first impulse. This concept
is shown in Figure 3.

At this point, it is useful to derive the amplitudes
and time locations of the two-impulse command
shown in Figure 3. If we have a reasonable es-
timate of the system’s natural frequency, ω, and
damping ratio, ζ, then the residual vibration that
results from a sequence of impulses can be de-
scribed by:

V (ω, ζ) = e−ζωtn
√
C(ω, ζ)2 + S(ω, ζ)2 (1)

where,

C(ω, ζ) =
n∑

i=1

Aie
ζωticos(ωdti),

S(ω, ζ) =
n∑

i=1

Aie
ζωtisin(ωdti) (2)
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Figure 3: Two Impulse Response

Ai and ti are the amplitudes and time locations
of the impulses, n is the number of impulses in
the impulse sequence, and ωd = ω

√
1− ζ2. Equa-

tion 1 is actually the percentage residual vibration.
It tells us how much vibration a sequence of im-
pulses will cause, relative to the vibration caused
by a single, unity-magnitude impulse. By setting
(1) equal to zero, we can solve for the impulse
amplitudes and time locations that would lead to
zero residual vibration. However, we must place
a few more restrictions on the impulses, or the
solution will converge to zero-valued or infinitely-
valued impulses. To avoid the trivial solution of all
zero-valued impulses and to obtain a normalized
result, we require the impulses to sum to one:

∑
Ai = 1. (3)

Impulses could satisfy (3) by taking on very large
positive and negative values. One way to obtain
a bounded solution is to limit the impulse ampli-
tudes to finite values or to positive values:

Ai > 0, i = 1,2,....,n (4)

The problem we want to solve can now be stated
explicitly: find a sequence of impulses that makes
(1) equal to zero, while also satisfying (3) and (4).
For a two-impulse sequence, the problem has four
unknowns - the two impulse amplitudes (A1, A2)
and the two impulse time locations (t1, t2). With-
out loss of generality, we can set the time location
of the first impulse equal to zero, t1 = 0. The prob-
lem is now reduced to finding three unknowns (A1,
A2, t2). In order for (1) to equal zero, the expres-
sions in (2) must both equal zero independently

because they are squared in (1). Therefore, the
impulses must satisfy:

0 = A1 +A2e
ζωt2cos(ωdt2) (5)

0 = A2e
ζωt2sin(ωdt2) (6)

Equation (6) can be satisfied in a nontrivial man-
ner, when the sine term equals zero. This occurs
when:

ωdt2 = nπ,⇒ t2 =
nπ

ωd
=

nTd

2
n=1,2,.. (7)

where Td is the damped period of vibration. This
result tells us that there is an infinite number of
possible values for the location of the second im-
pulse - they occur at multiples of the half period of
vibration. To cancel the vibration in the shortest
amount of time, choose the smallest value for t2:

t2 =
Td

2
(8)

For this simple case, the amplitude constraint
given in (3) reduces to:

A1 +A2 = 1 (9)

Using the expression for the damped natural fre-
quency and substituting (8) and (9) into (5) gives:

0 = A1 − (1−A1)exp(
ζπ√
1− ζ2

) (10)

Rearranging (10) and solving for A1 gives:

A1 =
exp( ζπ√

1−ζ2
)

1 + exp( ζπ√
1−ζ2

)
(11)

Defining K = exp( −ζπ√
1−ζ2

), the sequence of two

impulses that leads to zero residual vibration can
now be summarized as:[

Ai

ti

]
=

[
1

1+K
K

1+K

0 0.5Td

]
(12)

2.2 Using Zero-Vibration Impulse Se-
quences to Generate Zero-Vibration
Commands
Real systems cannot be moved around with im-
pulses, so we need to convert the properties of the
impulse sequence given in (12) into a usable com-
mand. This can be done in a very simple way.
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Figure 4: Multi Pulse Shaped Input

The impulse sequence is convolved with any de-
sired command signal. The convolution product
is then used as the command to the system. If
the impulse sequence causes no vibration, then the
convolution product will also cause no vibration.

This command generation process, called input
shaping, is demonstrated in Figure 4 for an ini-
tial command that is a pulse function and a two-
impulse input shaper. Note that the convolution
product in this case is the two-pulse command sim-
ilar to that shown in Figure 2b. But in most cases
the impulse sequence will be much shorter than
the command profile. When this occurs, the com-
ponents of the shaped command that arise from
the individual impulses run together as shown in
Figure 5.
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Figure 5: Continuous Shaped Input

2.3 Robustness to Modeling Errors
The amplitudes and time locations of the impulses
depend on the system parameters (ω and ζ). If

there are errors in these values (and there always
are), then the impulse sequence will not result in
zero vibration. In fact, for the two-impulse se-
quence discussed above, there can be a lot of vi-
bration for a small modeling error. This lack of ro-
bustness was a major stumbling block for the orig-
inal formulation that was developed in the 1950’s.
This problem can be visualized by plotting a sen-
sitivity curve that shows the amplitude of residual
vibration as a function of the system parameters.
One such sensitivity curve for the zero-vibration
(ZV) shaper is shown in Figure 6 with the normal-
ized frequency on the horizontal axis and the per-
centage vibration on the vertical axis. Note that
as the actual frequency deviates from the model-
ing frequency, the amount of vibration increases
rapidly. The robustness can be measured quan-
titatively by measuring the width of the curve at
some low level of vibration. This non-dimensional
robustness measure is called the shaper’s insensi-
tivity. The 5% insensitivity has been labeled in
Figure 6.
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Figure 6: Sensitivity Curves

In order to increase the robustness of the input
shaping process, the shaper must satisfy addi-
tional constraints. One such constraint sets the
derivative of (1), with respect to frequency, equal
to zero [8]. That is:

0 =
d

dω
V (ω, ζ) (13)

When this additional constraint is satisfied with V
= 0, the result is a Zero Vibration and Derivative
(ZVD) shaper [8]. By comparing the 5% insen-
sitivities shown in Figure 6, it can be concluded
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that the ZVD shaper is significantly more robust
to modeling errors than the ZV shaper.

Since the development of the ZVD shaper, several
other robust shapers have been developed. In fact,
shapers can now be designed to have any amount
of robustness to modeling errors [38]. The sen-
sitivity curve for a very robust shaper is shown
in Figure 6. Robustness is not restricted to er-
rors in the frequency. Figure 7 shows a three-
dimensional sensitivity curve for a shaper that
was designed to suppress vibration between 0.7
Hz and 1.3 Hz and also over the range of damp-
ing ratios between 0 and 0.2. The shapers corre-
sponding to these curves were designed using the
Specified-Insensitivity (SI) approach. The most
straightforward method for generating a shaper
with specified insensitivity to modeling errors is
the technique of frequency sampling [19], [38].
This method requires repeated use of the vibra-
tion amplitude equation, (1). In each case, V(ω,ζ)
is set less than or equal to a tolerable level of vi-
bration, Vtol:

Vtol > e−ζωstn
√
C(ωs, ζ)2 + S(ωs, ζ)2, s = 1,..., m

(14)
where ωs represents the m unique frequencies at
which the vibration is limited.

For example, if the shaper needs to suppress vi-
bration for frequency errors of 20%, then the con-
straint equations limit the vibration to below Vtol

at specific frequencies between 0.8ωn and 1.2ωn.
This procedure is illustrated in Figure 8 for Vtol
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= 5%. Another technique related to SI shaping
minimizes the expected level of residual vibration
over a specified frequency range [52]. This tech-
nique has the advantage of taking into account any
known distribution of the frequencies in the range
being suppressed.

Any shaped command will have its rise time in-
creased by the duration of the shaper as is shown
in Figure 9a. Because the duration of the ZVD
shaper is twice that of the ZV shaper, the ZVD
shaper increases the rise time more than the ZV
shaper. This increased rise time is the price that
is paid for the increased robustness to modeling
errors. With the SI shapers, increasing robustness
increases rise time in a nonlinear manner. This
leads to certain operating points that are advan-
tageous [3].

For example, the ZVD shaper has a duration of
only 1 period of the natural frequency. This time
penalty is a small price to pay for the excellent ro-
bustness to modeling errors. To demonstrate this
tradeoff, Figure 9 shows the response of a spring-
mass system to step commands shaped with the
three shapers shown in Figure 6. Figure 9a shows
the response when the model is perfect and Fig-
ure 9b shows the case when there is a 30% error in
the frequency estimate. The increase in rise time
caused by the shapers is apparent in Figure 9a,
while Figure 9b shows the vast improvement in vi-
bration reduction that the robust shapers provide
in the presence of modeling errors.

The techniques mentioned above produce robust-
ness built into the design of the input shaper.
There are other approaches to achieve robust in-
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Figure 9: System Response: a) Perfect Knowledge,
b) 30% Error

put shaping. Several researchers have used adap-
tive input shaper modification techniques to ob-
tain robustness. Sensor feedback is used to tune
the input shaper such that the residual vibration
is decreased. Some of these approaches include
that of Tzes and Yurkovich [26] and Khorrami, et
al. [25], who used on-line adaptive schemes to up-
date the input shaper parameters. Bodson used a
recursive least-squares technique to tune the input
shaper parameters [36]. Magee and Book modified
the input shaper as a function of the system con-
figuration [18].

2.4 Concurrent Design of Command Shap-
ing and Feedback Control
Given that command shaping can greatly reduce
the vibration of the system, it reduces the burden
on the feedback controller. Therefore, the feed-
back control design becomes easier; it does not
have to be concerned with reducing vibration in-
duced by the reference command. The design of
the feedback controller can be primarily based on

disturbance rejection and stability, which are its
natural strengths. Given this realization, the ques-
tion arises as to how to optimize the combined de-
sign of the feedback and command shaping com-
ponents.

One method assumes a PD feedback controller and
then concurrently chooses the PD gains and the in-
put shaper impulses while satisfying performance
specifications [56], [63]. The design method takes
into account limits on allowable overshoot, resid-
ual vibration, and actuator effort. Furthermore,
the structure of the method allows a wide range
of performance requirements, such as disturbance
rejection, to be integrated into the design. The re-
sults indicate that PD feedback control enhanced
with input shaping provides better performance
than PD control alone. This effect is demonstrated
in Figure 10 where the settling time is shown as a
function of the damping ratio of the system. With
PD control alone, the minimum settling time oc-
curs near ζ=0.7 - the classic solution. However,
when input shaping is used, the settling time can
be greatly reduced and this occurs when the con-
troller is tuned to have a small damping ratio.
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2.5 Shaper Design in the S-Plane and Z-
Plane
The effect of command shaping is to place zeros at
or near the flexible poles of the system. This idea
was well documented by Bhat and Mui [10]. This
realization leads to straightforward design proce-
dures in the z-plane that were first discussed by
Murphy and Watanabe [16]. Singh and Vadali [23]
illustrated that a time-delay filter designed to can-
cel the poles of the system results in the same solu-



tion as the posicast control developed by Smith [1].
They also illustrated that cascading multiple ver-
sions of the time-delay filter resulted in the robust
shaper that was proposed by Singer and Singer.
Singh and Vadali also proposed a simple technique
to design time-delay filters using the specified time
spacing of the sampling period [32].

Seth used z-plane analysis to design a digital
shaper for reducing vibration in a coordinate mea-
suring machine [27]. Tuttle developed a simple
step-by-step method to design multiple-mode in-
put shapers in the discrete time domain by bring-
ing together previous methods [30]. Additionally,
Tuttle directly addressed the issue of time opti-
mality for digital shapers by presenting a method
for finding a positive impulse shaper that had the
shortest time duration. Like Seth, Jones used z-
plane analysis to design a digital shaper for re-
ducing vibration in a coordinate measuring ma-
chine [54]. Additionally, Jones indicated the re-
quirements on shaper duration to obtain an input
shaper with only positive impulses.

Magee applied a digital shaping filter to a system
with varying parameters by modifying the input
shaper duration to account for system parameter
variations [18]. This work verified the difficulty
of changing shaper duration that was predicted
by Murphy and Watanabe. More recently, Park
et al. extended the z-plane based design of digi-
tal input shapers to more robust shapers [59]. In
particular, Park devised a discrete time sensitiv-
ity expression. This expression was used to design
very robust multiple hump input shapers directly
in the z-plane [47].

3 Saturating Controllers

The problem of design of optimal control with lim-
its on control authority has been of interest for
decades. When cost functions such as maneuver
time, or fuel or a weighted combination of fuel and
time are considered, the resulting optimal control
profiles are bang-bang or bang-off-bang implying
that the controller is turned on to the extreme
values or is turned off. The problem of design
of time-optimal control profiles for flexible struc-
tures has been of increasing interest over the past
two decades. There have been numerous computa-

tional approaches presented to deal with the effect
of flexibility. Most of these deal with single in-
put rest-to-rest problems under two classes: near-
minimum time control and exact minimum-time
control.

The first category is based on smooth approxima-
tions to the time-optimal control for an equiva-
lent rigid body. This is applicable where the ap-
plied input can be smoothly varied and are not
restricted to an on-off set. Junkins et al. [9] pa-
rameterize a single switch bang-bang profile using
cubic polynomials in time and illustrate that the
residual vibration of a flexible structure can be sig-
nificantly reduced for a small penalty in maneuver
time. Vadali et al. [33] used the arctan to ap-
proximate the signum function and used a param-
eterized smooth control profiles to determine near-
time optimal control profiles for three dimensional
attitude control of ASTREX, a flexible spacecraft
testbed.

The second category studies the exact time-
optimal control problem. The determination of
time-optimal control profiles for flexible slewing
structures with limited control authority has been
addressed by Singh et al. [7]. They illustrate that
the time-optimal control profile for un-damped
systems is antisymmetric about the mid-maneuver
time. Hablani [11] studied the same problem,
but with damped modes. Ben-Asher et al. [14],
present an elegant technique to prove the time-
optimality of the control profiles. It is well known
that the time-optimal control profile is highly sen-
sitive to errors in system parameters. Liu and Wie
[15] present a technique to “robustify” the time-
optimal control by including additional switches
to the control profile. Singh and Vadali [29] pro-
pose a frequency domain approach for the design
of time-optimal controllers for flexible structures.
The motivation behind their work is the fact that
a bang-bang input can be viewed as a summation
of time-delayed step commands. They pose the
problem as the design of a time-delay filter de-
signed to cancel all the poles of the system and
satisfy the rigid body boundary conditions. They
use the knowledge that locating multiple zeros of
the time-delay filter at the estimated location of
the poles of the system, results in robustness to
modeling uncertainties. They illustrate their tech-
nique by designing time-optimal and robust time-



optimal control profiles for rest-to-rest and spin-
up maneuvers for the benchmark floating oscillator
problem.

This section will discuss the design of robust time
and weighted fuel-time optimal controllers. The
benchmark floating oscillator problem [21], will be
used to illustrate the design technique. The design
problem is posed as the design of a time-delay fil-
ter which generate the bang-bang or bang-off-bang
control profile when it is driven by a step input.
The knowledge that locating multiple zeros of the
time-delay filter at the estimated location of the
poles of the system will result in robustness to un-
certainty in the location of the pole of the system
will be used in the design process. For a function
f(s) = 0, to have a minimum of two roots at s =
s0 requires that

f(s0) = 0 and
df(s)
ds

∣∣∣∣
s0

= 0. (15)

This fact is utilized to develop constraint equa-
tions to design time-delay filters with multiple ze-
ros at specified locations.

m2m1 ��❅
❅❅�

��❅
❅❅��

k✲
y1

✲
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Figure 11: Floating Oscillator

The equations of motion of the benchmark floating
oscillator problem illustrated in Figure 11 are
[
m1 0
0 m2

] [
ÿ1

ÿ2

]
+

[
k −k
−k k

] [
y1

y2

]
=

[
1
0

]
u.

(16)
The state constraint for all the optimization prob-
lems considered in this section are

y1(0) = y2(0) = 0, and ẏ1(0) = ẏ2(0) = 0
y1(tf ) = y2(tf ) = 1, and ẏ1(tf ) = ẏ2(tf ) = 0 (17)

and the normalized control is subject to the con-
straint

−1 ≤ u ≤ 1. (18)

The nominal values of the parameters of the sys-
tem are

m1 = m2 = k = 1 (19)

The equations of motion can be decoupled by the
similarity transformation

θ =
1
2
(y1 + y2) and q =

1
2
(y2 − y1) (20)

resulting in the equations of motion

θ̈ =
1
2
u

q̈ + 2q = −1
2
u, (21)

and the corresponding boundary conditions are

θ(0) = q(0) = 0 and θ̇(0) = q̇(0) = 0
θ(tf ) = 1, q(tf ) = 0 and θ̇(tf) = q̇(tf ) = 0. (22)

The decoupled equations are used to derive the
constraint equations for the optimization prob-
lem since this approach can be generalized for any
number of modes.

✲ ∑N
i=0 Ai e

−sTi ✲ GP (s) ✲
U∗(s) U(s) Y (s)

Step Time Delay Filter Plant

Figure 12: Time Delay Filter Structure

In this paper, the design of control profiles subject
to the aforementioned control constraint is posed
as the design of a time-delay filter. The output
of this time-delay filter subject to a step input
is the optimal switching control profile, as shown
in Figure 12. For instance to generate a single
switch bang-bang control profile which is the time-
optimal control profile for a rigid body system, the
transfer function of the time-delay filter is

G(s) = 1− 2exp(−sT ) + exp(−2sT ), (23)

and the optimal control profile is given by the
equation

u(s) =
1
s
(1− 2exp(−sT ) + exp(−2sT )). (24)

The generic transfer function of a time-delay filter
is represented as

G(s) =
N∑

i=0

Aiexp(−sTi), where T0 = 0, (25)



and where Ai belongs to the set

Ai =
[ −2 −1 1 2

]
(26)

to guarantee that the output of the time-delay fil-
ter is either bang-bang or bang-off-bang. For rest-
to-rest maneuver of flexible structures, the con-
straint which guarantees zero residual vibration is
derived by requiring a set of zeros of the time-delay
filter to cancel the under-damped poles of the sys-
tem. For a system with a set of under-damped
poles at

s = σ ± jω, (27)

the constraint equations are

N∑
i=0

Aiexp(−σTi)cos(ωTi) = 0, (28)

and
N∑

i=0

Aiexp(−σTi)sin(ωTi) = 0, (29)

which are derived by forcing the real and imag-
inary parts of the transfer function of the time-
delay filter to zero at s = σ±jω. Note, that this is
equivalent to the conditions given in Equations 2.

To satisfy the boundary conditions for the rigid
body for the rest-to-rest maneuver, the transfer
function of the time-delay filter should have two
zeros at the origin of the complex plane to cancel
the rigid body poles, resulting in the constraint
equation

N∑
i=0

Ai = 0 (30)

and
N∑

i=0

AiTi = 0 (31)

The constraint to satisfy the total rigid body dis-
placement is

θ(tf = TN ) =
1
2

N∑
i=0

Ai
(TN − Ti)2

2
. (32)

Finally, to desensitize the control profile to uncer-
tainties in the location of the under-damped poles
of the system, constraints are derived which place
multiple zeros of the time-delay filter at the esti-
mated location of the poles of the system. These

constraints are

N∑
i=0

AiTiexp(−σTi)cos(ωTi) = 0, (33)

and
N∑

i=0

AiTiexp(−σTi)sin(ωTi) = 0 (34)

which are equivalent to the zero derivative con-
straint given in Equation 13.

Since the constraints are nonlinear, there are po-
tentially numerous parameter sets which satisfy all
of the constraints. The sufficient conditions for the
optimality of the control profile are dependent on
the cost function to be optimized for and a gen-
eral approach to verify the optimality is not avail-
able. For un-damped system, it has been shown
that the control profile is anti-symmetric about the
mid-maneuver time. This fact can be exploited to
reduce the number of parameters to be optimized
for.

3.1 Time-Optimal Control
The time-optimal control profile for the un-
damped benchmark problem can be determined
by solving the following parameter optimization
problem which is derived by exploiting the anti-
symmetric properties of the control profile (Fig-
ure 13):

min J = T 2
2 (35)

−2cos(ω(T2 − T1)) + 1 + cos(ωT2) = 0 (36)
1
2
(2T 2

2 − (2T2 − T1)2 + T 2
2 − T 2

1 ) = 1, (37)

where

T0 = 0, T1 = T1, T2 = T2, T3 = 2T2−T1, T4 = 2T2

A0 = 1, A1 = −2, A2 = 2, A3 = −2, A4 = 1. (38)

To desensitize the controller to the frequency of
the flexible mode, two switches are added to the
control profile and the problem is

min J = T 2
3 (39)

−2cos(ωT31) + 2cos(ωT32) + 1 + cos(ωT3) = 0 (40)

−2T31sin(ωT31) + 2T32sin(ωT32) + T3sin(ωT3) = 0 (41)

2T 2
3 − (2T3 − T1)

2 + (2T3 − T2)
2 − T 2

3 + T 2
2 − T 2

1 = 2. (42)

where the double subscript represent Pij = Pi−Pj .
Having solved for the switch times, their optimal-
ity have to be verified. This is achieved by solving
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Figure 13: Antisymmetric Control Profile

for the costates and the resulting switching curve
is used to corroborate the optimality of the solu-
tion. Details of these techniques have been pre-
sented in [7], [15], [14], [29] etc.

Figure 14 illustrates the time-optimal control pro-
file and the robust control profile and the corre-
sponding energy sensitivity curves. It is clear that
local to the nominal spring stiffness there is a sig-
nificant improvement of the insensitivity of the ro-
bust control profile.
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The variation of the structure of time-optimal con-
trol profiles as a function of damping has been
illustrated by Pao [37] and Singh [35]. For a two-
mass system connected by a spring and a damper,
the control profile changes from a three switch for
un-damped systems to a five switch and back to
a three switch control profile, as the damping is
increased. Time-optimal control profile for mult-
mode systems have been derived in [45]. Tuttle
and Seering, developed a Matlab toolbox to gen-

erate time-optimal commands for a wide range of
flexible systems [55].

3.2 Fuel/Time Optimal Control
The Fuel/Time optimal control profile for the
benchmark problem can be represented as shown
in Figure 15 where the anti-symmetric property
for undamped systems is exploited.
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Figure 15: Fuel-Time Optimal Control Profile

Minimizing the cost function

J =
∫ tf

0
(1 + α|u|) dt (43)

where the cost function J is a weighted (α > 0)
combination of the maneuver time and fuel con-
sumed results in the parameter optimization prob-
lem:

min J = 2T4 + 2α [T43 + T21] (44)

cos(ωT43)− cos(ωT42)− cos(ωT41) + cos(ωT4) = 0 (45)

1

2
(−T 2

1 − T 2
2 + T 2

3 + 2T4(T1 + T2 − T3)) = 1. (46)

Solving for the optimal control profile as a func-
tion of α, the control profile changes from a three
switch bang-bang profile for α = 0, to a six switch
bang-off-bang control profile which simplifies to a
two switch bang-bang profile for α > 0.6824, for
the benchmark problem, as shown in Figure 16.

Hartmann and Singh [50] present a general devel-
opment of the necessary and sufficient conditions
for optimality of the fuel/time optimal control pro-
files for system of order higher than the benchmark
problem.

3.3 Minimax Control
The techniques to desensitize the controller to
modeling errors which have been presented to this
point, only require information about the nomi-
nal values of the model parameters. The result-
ing controllers are robust in the vicinity of the
nominal parameters of the system. However, in
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numerous applications, the range of uncertainty is
know and often the distribution of the uncertainty
is know. There is thus a desire to formulate opti-
mization problems which includes the information
about the range of uncertainty, in the design of
controllers. The technique expounded in this sec-
tion is germane to the design of the input shapers,
as well as for the design of saturating controllers.

For a mechanical system undergoing rest-to-rest
maneuvers, the model can be represented as

Mÿ + C(p)ẏ +K(p)y = Dr (47)

whereM is a positive definite mass matrix, and K
and C, the stiffness and damping matrices. K is
positive semi-definite when the model of the sys-
tem includes rigid body modes and is positive def-
inite otherwise. p is a vector of uncertain param-
eters whose elements satisfy the constraints:

plb
i ≤ pi ≤ pub

i (48)

where plb
i and pub

i represent the lower and upper
bounds on the parameters respectively. The goal
here is to design a saturating controller with the
objective of minimizing the maximum value of the
residual energy

min
x

max
p

F

F =
1
2
ẏTMẏ+

1
2
(y−yf )TK(y−yf )+

1
2
(yr−yrf )2

(50)
where x is a vector of parameters which define
the saturating controller and yf corresponds to the

final displacement states of the system. The above
equation will be referred to as the pseudo-energy
function since it is associated with a hypothetical
spring whose potential energy is zero when y =
yf . The pseudo-energy function is evaluated at the
final time, i.e., the end of the maneuver. The last
term is added to guarantee that the cost function
is positive definite.

Minimax bang-bang controllers are designed for
the floating oscillator benchmark problem to illus-
trate the proposed technique. The time-optimal
control of the benchmark problem is a 3-switch
anti-symmetric bang-bang control profile. The
thin solid line in Figure 17 illustrates the vari-
ation of the residual energy of the time-optimal
control to variations in the spring stiffness. A 3-
switch minimax controllers is designed without the
constraint that the residual energy be zero at the
nominal value of the spring stiffness. The thin
dashed line illustrates that the maximum mag-
nitude of the residual energy over the uncertain
range (0.7 < k < 1.3) has been minimized, but at
the cost of non-zero residual energy for the nomi-
nal model. Next, the 5-switch robust time-optimal
control profile is designed to force the slope of the
sensitivity curve for the nominal system to go to
zero. The think solid line illustrate the signifi-
cant reduction of the residual energy over the en-
tire uncertain range. However, this is achieved
at a cost of increased maneuver time. Finally, a
5-switch minimax controller is designed and the
thick dashed line illustrates the improvement over
the robust 5-switch time-optimal controller. The
resulting sensitivity curve is similar to the curve
for extra-insensitivity input shapers [40].

3.4 Finite Jerk Time-Optimal Control
Recently, Muenchhof and Singh [58] and Lim et
al. [53] have proposed a optimal control formula-
tion which includes limits on the rate of change of
control (Jerk). The control rate profiles are bang-
bang or bang-off-bang as a function of the per-
mitted jerk and the maneuver distance, for a rest-
to-rest maneuver. The problem in [58], is posed
as the design of time-delay filter which is parame-
terized to generate a bang-bang or bang-off-bang
profile whose integral is the control input to the
plant. Figure 18 illustrates the variation of the
switches and change of the structure of the con-
trol profile as a function of permitted jerk for the
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benchmark floating oscillator problem.
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Figure 18: Switch Time Trajectories

It can be seen that the structure of the control pro-
file changes significantly. The thick vertical lines
indicate the value of jerk where switches collapse
or are spawned. It is interesting to note that the
maneuver time only increases marginally. as the
permitted jerk is decreased from ∞ to 2.

4 Nonlinear Systems

The technique presented for the design of con-
troller which are robust to modeling uncertainties
included location of multiple zeros of the time-
delay filter at the estimated location of the poles
of the system. This approach obviously cannot be

used for the design of robust control profiles for
nonlinear systems. Liu and Singh [41] proposed
a technique where the sensitivity state equations
are included in the problem formulation with the
constraint that the sensitivity states be forced to
zero at the final time. For the nonlinear system

ẋ = f(x, u, p), (51)

where p is the vector of uncertain parameters, the
sensitivity state equations are

dẋ

dpi
=

∂f

∂pi
+

n∑
j=1

∂f

∂xj

dxj

dpi
. (52)

The control profile should in addition to satisfying
the boundary conditions of the system states x,
must also force

dx

dpi

∣∣∣∣
tf

= 0, ∀pi. (53)

To illustrate this approach, consider the bench-
mark problem with a nonlinear spring whose
model is

m1ÿ1 + k1(y1 − y2) + k2(y1 − y2)3 = u (54)
m2ÿ2 − k1(y1 − y2)− k2(y1 − y2)3 = 0. (55)

The sensitivity state equations are

m1
dÿ1

dk1
+ y12 + k1

dy12

dk1
+ 3k2y

2
12

dy12

dk1
= 0 (56)

m2
dÿ2

dk1
− y12 − k1

dy12

dk1
− 3k2y

2
12

dy12

dk1
= 0 (57)

m1
dÿ1

dk2
+ k1

dy12

dk2
+ y3

12 + 3k2y
2
12

dy12

dk2
= 0 (58)

m2
dÿ2

dk2
− k1

dy12

dk2
− y3

12 − 3k2y
2
12

dy12

dk2
= 0 (59)

The time-optimal control profile is designed to sat-
isfy the boundary conditions

y1 = y2 = ẏ1 = ẏ2 =
dy1

dk1
=

dẏ1

dk1
=

dy1

dk2
=

dẏ1

dk2
= 0

∣∣∣∣
t=0

y1 = y2 = 1, ẏ1 = ẏ2 =
dy1

dk1
=

dẏ1

dk1
=

dy1

dk2
=

dẏ1

dk2
= 0

∣∣∣∣
t=tf

.

(60)
Figure 19 illustrates the reduction in residual vi-
bration of the desensitized time-optimal control,
compared to the time-optimal control in the vicin-
ity of the nominal values of the spring coefficients.
The maneuver time of the two time-optimal con-
trol profile is tf = 4.1514, and for the desensitized
control profile is tf = 6.2439. It is clear the insen-
sitivity to model parameters is achieved at a cost
of increased maneuver time.
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Figure 19: Sensitivity Plot for the 3/9 switch Control

5 Applications

Given the simple approach and ease of implemen-
tation of basic input shaping techniques, they have
been used in a variety of applications. The wide
spread use is also attributable to the robustness
that can be added to many of the techniques.
One major area of success has been on cranes and
crane-like structures. Starr wrote an early pa-
per that implemented a ZV-like shaping scheme
on a crane [6]. Groups at Sandia and Oak Ridge
National labs have been especially active in this
area [28], [20], [43]. Their approach has been sim-
ilar to the input shaping described in Section 2;
however, the shaping filter utilized has often been
an IIR filter instead of a FIR filter. Their tech-
nique has also been utilized to control sloshing
fluids [43]. Another approach, which has been im-
plemented on some large gantry cranes, designed
input shapers to suppress vibration over the ex-
pected operating ranges of the cranes [44]. Fig-
ure 20 shows the reduction in residual vibration
as a function of the hoist cable length.
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Figure 20: Vibration Reduction vs. Cable Length

High tech manufacturing is perhaps the area with
the highest number of input shaping applications.
Shaping was an important component of a control
system developed for a wafer stepper [48]. Multi-
ple modes of a silicon-handling robot were elimi-
nated with input shaping [31]. Accuracy of coordi-
nate measuring machines has been improved with
command shaping [54], [27], [39]. The throughput
of a hard-disk-drive-head testing machine was sig-
nificantly improved with shaping [46]. Figure 21
shows the position response of the reading heads
during testing both before and after input shap-
ing was implemented. The greatly reduced set-
tling time allowed for much higher throughput.
Command shaping has been combined with vision
sensing and learning control on x-y-z gantry-type
automation machinery [62]. Figure 22 shows the
decrease in tip vibration of the machine as the
learning controller adapts the input shaper to the
system vibration during repeated motion.
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Figure 21: Head Response During Testing

Applications involving shaping the commands to
on-off actuators or saturating actuators are fewer
than with real-time shaping, but there have still
been a number of successes. In fact, the crane
control scheme whose results are shown in Fig-
ure 20 uses an on-off actuator switching algorithm
to accomplish the vibration reduction. Recently,
a technique for shaping the momentum dumping
of spacecraft was adopted as a baseline design for
the next generation space telescope [60].
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